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1. I N T R O D U C T I O N  

An object is an abstract software model o f  a problem domain 
entity. Objects are packages o f  both data and operations on 
that data [Goldberg 83, Booch 831. The xaa (tm) package 
construct i s  representative o f  this general notion o f  an object. 
-- ObJect-oriented _________--- ---- design is the technique o f  using objects as the 
basic unit o f  modularity in system design. T h e  Software 
Engineering Laboratory at t h e  Goddard Space Flight Center- is 
currently involved in a pilot project t o  develop a flight 
dynamics simulator in Ada (approximately 40,000 statements) 
using object-oriented methods. Several authors have applied 
object-oriented concepts t o  Ada (e.g., [Booch 83, Cherry 85bl). 
In our experience we have found these methodologies limited 
[Nelson 861. A s  a result we have synthesized a more general 
approach which allows a designer t o  apply powerful, 
object-oriented principles t o  a wide range o f  applications and 
at all stages of design. The present paper provides an overview 
o f  our approach. Further, we also consider how object-oriented 
design fits into the overall software life-cycle. 

2 .  O B J E C T S  AND O B J E C T  D I A G R A M S  

We can model a procedure -------- as a mathematical function. That 
is, given a certain set o f  inputs (arguments and global data), a 
procedure always produces the same set o f  outputs (results and 
global updates). A procedure, for--exampTey c a n n o t  directly 
model an address book, because an address book has ----- memory (a set 
o f  addresses) which can be accessed and updated. Normally, the 
solution t o  this is t o  place such memory in global variables. 

Figure 1 g i v e s  a representation o f  the above situation. 
This diagram uses a notation similar t o  [Yourdon 791 to show 
both data and control flow. The arrow from CALLER t o  PROCEDURE 
indicates that CALLER transfers control t o  PROCEDURE. Note that 
there is an implicit return o f  control when PROCEDURE finishes. 
The smaller arrows in-Tigu?e T-sEow-iEe data flows, which may go 
in either direction along t h e  control arrow. Also, figure 1 
includes an explicit symbol f o r  t h e  GLOBAL DATA. Control arrows 
directed towards this symbol denote data access, even though 
control never really flows into t h e  data, o f  course. This 
convention indicates that t h e  data is always passive and never 
--------- initiates any action. 
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FIGURE 2 An ADDRESS BOOK object 

storage leaves data open t o  illicit 
modification. T o - a v o i d  this,-an object packages some memory 
together with all allowable operations on it. We can model an 
object as a mathematical "state machine" with some internal 
state which can be accessed and modified by a limited number of 
mathematical functions. We thus implement an object as a 
packaged set of procedures and internal data, as shown i n  
figure 2. For an address b o o k  object, the internal memory would 
be a set o f  addresses, and the allowable operations would be 
accessing an address by name, adding an address, etc. Unlike a 
procedure, t h e  same arguments t o  an object operation may produce 
--------- different resulfs--at different times, depending on t h e  hidden 
internal state. We will diagram an object showing only its 
operational connections to other objects, as i n  t h e  -- obiect --- 
--- diagram --- o f  figure 3 [Seidewitz 85a]. 

When there are several control paths on a complicated 
object diagram, it rapidly becomes cumbersome t o  show data flows 
or all individual procedure control flows. Therefore, an arrow 
between objects on an object diagram indicates that one object 
invokes --- o n e  -- o r  ---- more of the operations provided by another object 
and is not marked with data flow arrows. -- Obiect --- ------ descrigtions _-_-_ 
for each object on a diagram provide details o f  t h e  data flow. 
An object description includes a list o f  all operations provided 
by an object and, for each arrow leaving the object, a list o f  
operations used from another object. F o r  example, t h e  object 
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-* --- d e s c r i p t i o n  f o r  DATE BOOK f r o m  f i g u r e  3 i s :  

P r o v i d e s :  
N e x t - A p p o i n t m e n t  ( )  NAME t ADDRESS 
G e t  A p p o i n t m e n t  (DATE t TIME) NAME + ADDRESS 
Make A p p o i n t m e n t  (DATE + TIME + NAME)  
C a n c e l - A p p o i n t m e n t  ( D A T E  + T I M E )  

U s e s :  

A D D R E S S  BOOK 
Look-Up 

CLOCK 
Get  D a t e  
Ge t -T ime  - 

D a t a  i n  p a r e n t h e s e s  a r e  a r g u m e n t s  w h i c h  f l o w  a l o n g  t h e  c o n t r o l  
a r r o w ,  w h i l e  u n p a r e n t h e s i z e d  d a t a  a r e  r e s u l t s  w h i c h  a r e  
r e t u r n e d .  

FIGURE 3 A simple schedule organizer 

D. 

FIGURE 4 Parent-child hierarchy 

4 . 6 . 3  



3. OBJECT-ORIENTED DESIGN - 

The intent of an object is to represent a problem domain 
entity. The concept o f  abstraction deals with how an object 
presents this representation to other objects [Dijkstra 6 8 ,  
Liskov 74, Booch 831. There is a spectrum o f  abstraction, from 
objects which closely model problem domain entities to objects 
which really have no reason for existence. The following are 
some points in this scale: 

Best 

I 
----- Entity __----__--- Abstraction - An object represents a useful 
model of a problem domain entity. 

------ Action --___------ Abstraction - An object provides a generalized 
set of operations which all perform the same kind of 
function. 

_____-- Virtual ------- Machine Abstraction - An object groups 
toctether oDerations which are all used by some 
sukerior level o f  control or all use some j u n i o r  level 
set o f  operations. 

_____--_____ Coincidental _-__--------- "Abstraction" - A n  object packages a set 
o f  operations which have no relation to each other. 

The stronger the abstraction of an object, the more details are 
suppressed by the abstract concept. The principle of 
____------- information ----- h i d i n g  states that such details should be kept 
secret from other objects [Parnas 72, Booch 831, s o  as t o  better 
preserve the abstraction modeled by the object. 

The principles of abstraction and information h i d i n g  
provide the main guides for creating "good" objects. These 
objects must then be connected together to form a n  
object-oriented design [Seidewitz 85bl. Following [Rajlich 851, 
we consider two orthogonal hierarchies i n  software system 
designs. The parent-child ----------- hierarchy deals with the 
decomposition o f  larger objects into smaller component objects. 
The _____--- seniority hierarchy deals with t h e  organization o f  a set of 
objects into "layers". Each layer defines a ------- virtual ------- machine 
which provides services t o  senior layers [Dijkstra 681. A major 
strength o f  object diagrams is that they can distinctly 
represent these hierarchies. 

The parent-child hierarchy is directly expressed by 
_____-- leveling object diagrams (see figure 4). At its top level, any 
complete system may be represented by a single object. For 
example, figure 5 shows a diagram o f  the complete SCHEDULE 
ORGANIZER o f  the last section. The object SCHEDULE ORGANIZER 
represents the ''parent" o f  the complete object diagram of 
figure 3. The boxes labeled "USER" and "CLOCK" are -------- external 
-------- entities 9 objects which are not included in the system, but 
which communicates with t h e  top level system object. Note the 
arrow labeled '*RUN". Bq convention, RUN is the operation used 
to initially invoke the entire system. 
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FIGURE 5 External Entities Diagram FIGURE 6 Seniority hierarchy 

Figure 3 is t h e  decomposition o f  t h e  SCHEDULE ORGANIZER o f  
figure 5. Beginning at t h e  system level, each object can be 
refined i n  t h i s  way into a lower level object diagram. The 
result is a leveled set o f  object diagrams which completely 
describe t h e  structure o f  a system. At t h e  lowest level, 
objects are completely decomposed into FrrJmitive ------ -- obiects, ---- 
procedures and internal state data stores, resulting i n  diagrams 
similar to figure 2. 

The seniority hierarchy is expressed by t h e  topology of 
connections on a single object diagram (see figure 6). Any 
layer in a seniority hierarchy can call on any operation i n  
j u n i o r  layers, but ----- never any operation in a senior layer. Thus, 
all cyclic relationships between objects must be contained 
within a virtual machine layer. Object diagrams are drawn with 
t h e  seniority hierarchy shown vertically. Each senior object 
can be designed as if t h e  operations provided by junior layers 
were "primitive operations'' in an extended language. Each 
virtual machine layer will generally contain several objects, 
each designed according t o  t h e  principles o f  abstraction and 
information hiding. 

T h e  main advantage o f  a seniority hierarchy is that it 
reduces t h e  coupling between objects. This is because all 
objects in one virtual machine layer need t o  know nothing about 
senior layers. Further, t h e  centralization o f  t h e  procedural 
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and data flow control in senior objects can make a system easier 
t o  understand and modify. However, this very centralization -can 
cause a messy bottleneck. I n  such cases, the complexity of 
senior levels can be traded off against the coupling o f  j u n i o r  
levels. The important point is that the strength o f  the 
seniority hierarchy i n  a design can be chosen from a - spectrum ------ of 
possibilities, with the best design generally lying between the 
extremes. This gives t h e  designer great power and flexibility 
i n  adapting system designs t o  specific applications. 

I n  the simple automated plant simulation system shown i n  
figure 7, the j u n i o r  level components d o  not interact directly. 
This design is somewhat like an object-oriented version o f  the 
structured designs of [Yourdon 791. We can remove the data flow 
control from the senior object and let the junior objects pass 
data directly between themselves, using operations within the 
virtual machine layer (see figure 8). The senior object has 
been reduced to simply activating various operations i n  t h e  
virtual machine layer, with very little data flow. We can even 
remove the senior object completely by distributing control 
among the j u n i o r  level objects (see figure 9). The splitting o f  
t h e  RUN control arrow i n  figure 1 1  means that the three objects 
are activated simultaneously and that they run concurrently. 
The seniority hierarchy has collapsed, leaving a homologous or 
non-hierarchical desiqn fYourdon 791 (no seniority--bTerarchy, 

hierarchy still remains). A design that is; the parent-child 
which is homologous at all 
t o  what would be produced 
[Cherry 85a, Cherry 85bl. 

decomposition levels is very similar 
by the P A M E L A  (tm) methodology o f  

I FIGURE 7 A simple plant automation FIGURE 8 plant simulator with 
simulation system junior-level connections 
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Plant simulator, homologous design 
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context diagram 

4 .  OBJECT-ORIENTED LIFE CYCLE 

Object diagrams and the object-oriented design concepts 
discussed above can be used as part of an object-oriented life 
cycle. To do this, we must show that a specification can be 
translated into object diagrams, and that object diagrams map 
readily into Ada. We use structured analysis for developing the 
specification [DeMarco 791. The data flow diagrams of a 
structured specification provide a leveled, graphical notation 
containing the information needed to represent abstract 
entities, but in a form emphasizing data flow and data 
transformation. 

_--________ Abstraction --_- analysis __- is the process of making a transition 
from a structured specification to an object-oriented design 
[Stark 861. We will use a simplified version of an Electronic 
Message System ( E M S )  as an example o f  abstraction analysis. 
Figure 10 is the context diagram for EMS, and Figure 11 is the 
level 0 data flow diagram. EMS must allow the user to send, 
read, and respond to messages, to obtain a directory o f  valid 
users to which messages can be sent, and to add and delete users 
from that directory. 

The first step of abstraction analysis i s  to find a central 
----- entity. This is the entity that represents the best abstraction 
for what the system does or models. The central entity is 
identified in a similar way to transform analysis [Yourdon 7 9 1 ,  
but instead of searching for where incoming and outgoing ---- data 
--___ flows are most abstract we look for a set o f  processes and ---- data 
-_____ stores that are most abstract. It may sometimes be necessary to 
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l ook  a t  lower l e v e l  d a t a  f low d iagrams t o  f i n d  t h e  c e n t r a l  
e n t i t y .  EMS i s  a sys tem s e r v i n g  a person  s i t t i n g  a t  a t e r m i n a l  
s end ing  and r e c e i v i n g  messages.  On f i g u r e  11 we have c i r c l e d  
t h e  " c u r r e n t  u s e r "  d a t a  s t o r e  and t h e  p r o c e s s  1 .0  G E T  EMS 
C O M M A N D .  Toge the r  t h i s  p r o c e s s  and d a t a  s t o r e  r e p r e s e n t  t h e  
u s e r  e n t e r i n g  commands a t  a t e r m i n a l .  Thus t h e y  r e p r e s e n t  t h e  
c e n t r a l  e n t i t y .  

Next ,  we need t o  f i n d  e n t i t i e s  t h a t  d i r e c t l y  s u p p o r t  t h e  
c e n t r a l  e n t i t y .  We do t h i s  by f o l l o w i n g  d a t a  f lows  away from 
t h e  c e n t r a l  e n t i t y  and g r o u p i n g  p r o c e s s e s  and d a t a  s t o r e s  i n t o  
a b s t r a c t  e n t i t i e s .  I n  o u r  example t h e  USER DIRECTORY d a t a  s t o r e  
and t h e  t h r e e  p r o c e s s e s  ( 2 . 0 ,  4 . 0  a n d  5 . 0 )  s u p p o r t i n g  i t  form an 
e n t i t y .  The p r o c e s s  3 . 0  ACCESS Q U E U E S  w i t h  t h e  d a t a  s t o r e  U S E R  
Q U E U E  INDEX a l s o  form an e n t i t y .  All  t h e s e  e n t i t i e s  a r e  c i r c l e d  
and l a b e l e d  on f i g u r e  11. We c o n t i n u e  t o  f o l l o w  t h e  d a t a  f lows  
and t o  i d e n t i f y  e n t i t i e s  u n t i l  a l l  t h e  p r o c e s s e s  and d a t a  s t o r e s  
a r e  a s s o c i a t e d  wi th  a n  e n t i t y .  

F i g u r e  12 i s  t h e  ----- e n t i t y  graph -- - f o r  EMS. Squares  r e p r e s e n t  
e n t i t i e s ,  l i n e s  w i t h  a r rows  r e p r e s e n t  f low o f  c o n t r o l  from one 
e n t i t y  t o  a n o t h e r ,  and l i n e s  w i t h  no arrowhead r e p r e s e n t  
i n t e r a c t i o n s  where f l o w  o f  c o n t r o l  i s  n o t  y e t  d e t e r m i n e d .  A 
"most s e n i o r "  e n t i t y  i s  p l aced  i n t o  t h e  d e s i g n  t o  g i v e  an 
i n i t i a l  f l ow o f  c o n t r o l .  I n  t h e  EMS example,  e n t i t y  EMS i s  t h i s  
most s e n i o r  o b j e c t ,  and we have t h e  U S E R  INTERFACE e n t i t y  
" c o n t r o l l i n g "  t h e  e x t e r n a l  e n t i t y  USER. T h i s  f l ow o f  c o n t r o l  

- 
FIGURE 11 EMS level 0 data flow diagram 
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i n t o  U S E R  w i l l  u l t i m a t e l y  b e  i m p l e m e n t e d  as  r e a d  and  w r i t e  
o p e r a t i o n s .  N o t e  a l s o  t h a t  t h e  USER e n t i t y  c o n t r o l s  EMS.  T h i s  
f l o w  o f  c o n t r o l  r e p r e s e n t s  t h e  u s e r  i n v o k i n g  t h e  EMS s y s t e m .  
A f t e r  t h i s  i n v o c a t i o n  c o n t r o l  r e s i d e s  w i t h  EMS u n t i l  t h e  s y s t e m  
i s  e x i t e d .  A l l  o t h e r  p o t e n t i a l  i n t e r f a c e s  a r e  shown b y  l i n e s  
w i t h  no  a r r o w s .  The numbers  i n s i d e  t h e  s q u a r e s  r e p r e s e n t  t h e  
p r o c e s s e s  and t h e  d a t a  s t o r e s  c o n t a i n e d  i n  t h e  e n t i t y .  T h i s  
p r o v i d e s  t r a c e a b i l i t y  f r o m  r e q u i r e m e n t s  t o  d e s i g n .  

The e n t i t y  g r a p h  i s  t h e  s t a r t i n g  p o i n t  f o r  o b j e c t  
i d e n t i f i c a t i o n .  I t  shows e n t i t i e s  w i t h  t h e  h i g h e s t  a b s t r a c t i o n  
p o s s i b l e  and  a l s o  shows a l l  t h e  p o s s i b l e  i n t e r c o n n e c t i o n s  
b e t w e e n  t h e  e n t i t i e s .  S i n c e  we a r e  t r y i n g  t o  b a l a n c e  d e s i g n  
c o m p l e x i t y ,  o b j e c t  a b s t r a c t i o n ,  and c o n t r o l  h i e r a r c h y ,  we w i l l  
a l t e r  t h e  e n t i t y  g r a p h  t o  f o r m  t h e  f i n a l  o b j e c t  d i a g r a m .  I n  EMS 
t h e  e n t i t i e s  a r e  e a s i l y  mapped i n t o  o b j e c t s .  The e n t i t i e s  U S E R ,  
U S E R  INTERFACE, a n d  EMS f o r m  a c y c l i c  g r a p h  and  t h e r e f o r e  a r e  on 
t h e  same v i r t u a l  m a c h i n e  l e v e l .  We c a n n o t  c o m b i n e  an e x t e r n a l  
e n t i t y  i n t o  an o b j e c t ,  b u t  c o m b i n i n g  EMS and  U S E R  I N T E R F A C E  
y i e l d s  a s i n g l e  o b j e c t  t h a t  i s  s e n i o r  t o  U S E R  D I R E C T O R Y  and 
M E S S A G E  CENTER. C o m b i n i n g  t h e  t w o  j u n i o r  o b j e c t s  w o u l d  s i m p 1  i f y  
t h e  d e s i g n ,  b u t  a t  t h e  e x p e n s e  o f  a b s t r a c t i o n ,  a s  t h e  message 
p a s s i n g  m e c h a n i s m s  h a v e  l i t t l e  t o  d o  w i t h  t h e  d i r e c t o r y .  We 
h a v e  a l s o  c h o s e n  t o  make U S E R  DIRECTORY s e n i o r  t o  M E S S A G E  
C E N T E R ,  s i n c e  t h e  d a t a  f l o w s  a r e  f r o m  U S E R  D I R E C T O R Y  i n t o  d a t a  
s t o r e s  c o n t a i n e d  b y  M E S S A G E  C E N T E R .  F i g u r e  1 3  shows t h e  
r e s u l t i n g  o b j e c t  d i a g r a m .  
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Needless t o  say, identifying objects is not always t h i s  
simple. Usually there is a trade-off made between level o f  
abstraction and design complexity, o r  a balancing o f  these two 
considerations and t h e  virtual machine hierarchy. When these 
situations occur it is still t h e  designer’s judgement that must 
determine which side o f  t h e  trade-off matters more f o r  t h e  
application being designed. 

Once t h e  object diagrams are drawn w e  can identify t h e  
operations provided and used by each object. In t h e  c a s e  o f  2.0 
USER DIRECTORY t h e  operations are identified by examining t h e  
primitive processes contained within processes 2.0, 4.0 and 5.0 
on figure 1 1 .  The data exchanged are identified by looking at 
data flows crossing t h e  object boundaries, with t h e  detailed 
information about the data being found in t h e  data dictionary. 
T h e  object description is produced by matching t h e  operations 
and t h e  data. T h e  description generated for 2.0 USER DIRECTORY 
is a s  follows: 

Provides: 
List Names ( )  LIST-OF NAMES 
Add user (USER NAME +-PASSWORD) 
Delete User (USER-NAME) 
Signon-(USER-NAME + PASSWORD) VALIDITY - FLAG 

Uses: 
3.0 MESSAGE QUEUES 

Reset Queue 
C r e a t e  - New - Queue 

Using t h e  subset data flow diagram o f  processes and data 
stores that an object contains, t h e  process o f  object 
identification can be repeated t o  produce a child object 
diagram. T h e  only difference is that entities are identified 
based on how they support t h e  object’s operations, not by 
finding a central entity. This process is used until t h e  lowest 
level o f  data f l o w  diagrams is exhausted. 

T h e  transition from an object diagram t o  Ada i s  
straightforward. T h e  relationship between object diagram 
notations and Ada language features is: 

-- ObJect --- --- Diagram --- 
Object 
Procedure 
State 
Arrow 
Actor 

Ada Construct 
Package 
Subprogram 
Package o r  t a s k  variables 
Procedure/function/entry call 
Entries/Accepts 

(not covered in this paper) 

--- -__-----_ 

Package specifications are derived from t h e  list o f  operations 
provided by an object. For t h e  EMS USER DIRECTORY object t h e  
package specification is: 
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package User-Directory is 

subtype USER-NAME is STRING(l..EO); 
subtype PASSWORD i s  STRING(1..6); 
t y p e  LIST - -  O F  NAMES is array (POSITIVE r a n g e  c > )  o f  USER-NAME; 

procedure Signon (User: in USER-NAME; PW : in PASSWORD; 

procedure Add-User (U: in USER NAME; PW : in PASSWORD); 
procedure Delete-User (U: in USER-NAME); 
function List-Names return LIST-OF-NAMES; 

Valid-User : out Boolean); 

end User-Directory; 

The package specifications derived from t h e  level 0 object 
diagram are placed i n  t h e  declarative part o f  t h e  top level Ada 
procedure a s  follows: 

procedure EMS is 
package User-Interface is 

procedure Start; 

end'User - Interface; 

package User - Directory i_s 

end User - Directory; 

package Message-Queues is 

end Message - Queues; 

package body User Interface is separate; 
package body User-Directory is separate; 
package body Message-Queues is separate; 

User 1nterface.Start; 

. . .  

. . .  

begin 

end EMS; 
for lower level object diagrams t h e  mapping is similar, with 
package specifications being nested in t h e  package body o f  the 
parent object. States are mapped into package body variables. 
This direct mapping produces a highly nested program structure. 
To implement t h e  same object diagram with library units would 
require t h e  addition o f  a package to contain data types used by 
two o r  m o r e  objects. This added package would serve as a global 
data dictionary. 

T h e  process o f  transforming object diagrams to Ada is 
followed down all the child object diagrams until w e  are at the 
level o f  implementing individual subprograms. If t h e  mapping is 
done without explicitly creating library units t h e  lowest level 
subprograms will all be implemented as subunits, rather than by 
embedding t h e  code in package bodies. 
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5. EVALUATION OF THE METHODOLOGY 

T o  measure how well abstraction analysis w o r k s  a s  a 
methodology w e  must first define o u r  criteria f o r  a good 
methodology. W e  will use Barry Boehm's "Seven Principles o f  
Software Engineering" [Boehm 761 as a basis o f  comparison. 
These principles are: 

Manage using a sequential life c y c l e  plan 
Maintain disciplined product control 
Perform continuous validation 
Use enhanced top down structured design 
Maintain clear accountability f o r  results 
Use better and fewer people 
Maintain a commitment t o  improve t h e  process 

Abstraction analysis supports all these principles. .The 
---- life c y c l e  plan is supported by providing t h e  abstraction 
analysis method for producing object diagrams, which are in turn 
mappable into Ada. This also provides a means o f  disciplined 
Froduct control by tracing how Ada software implements an object 
orienxed--&%Tsn, and also tracing h o w  t h e  design meets t h e  
specification. This traceability allows a manager t o  see that 
software meets its specification, and allows maintenance o f  
specifications, design, and software t o  be consistent. Grady 
Booch's [Booch 831 work influenced o u r  methodology, but did not 
provide a sufficient means o f  specifying large systems. Another 
drawback is that Booch does not define a formal mapping from a 
specification t o  a design. 

T h e  graphic notation supports a top down approach t o  
software development. T h e  leveling o f  both -&fafTow-aiagrams 
and o f  object diagr.ams allows t h e  designer to start at a high 
level and w o r k  top-down t o  a design solution. The use o f  
graphics also supports continuous validatioc by making design 
walkthroughs and iterative changes easier tasks t o  perform. 
Both Booch and Cherry [Cherry 85b] use graphics, but'Booch's 
notation w a s  not designed for large applications, and Cherry's 
methodology stops graphing after all t h e  concurrent objects have 
been identified. The graphics used by structured analysis 
[DeMarco 791 provide t h e  best analogy t o  how graphics are used 
i n  t h e  object diagram notation. 

T h e  life cycle model we have defined also supports the 
remaining three principles. Objects a r e  defined i n  t h e  design 
phase and implemented as separate Ada compilation units. Tools 
such as unit development folders can be used t o  maintain 
------------- accountability f o r  completion of t h e  design, implementation, and 
testing o f  objects. It is hoped that t h e  object-oriented 
approach and t h e  use of Ada will enhance both productivity and 
software reliability. T h i s  assertion will be tested by 
measuring t h e  outcome of t h e  pilot project in t h e  Software 
Engineering Laboratory at Goddard S p a c e  Flight Center. The 
success o f  t h i s  methodology would allow ------ better --- and ----- fewer people -- -- 
to concentrate more effort on producing a good design. 
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Finally, w e  a r e .  certainly committed t o  improving 
process. T h e  object diagram notation-and--absfraction analysis 
ha?e-aiready seen much change since t h e  initial versions were 
defined. Further refinement will be t o  define criteria for 
using parallelism, criteria for choosing between library units 
and t h e  nested approach defined above, and to generate object- 
oriented approaches t o  software specifications and software 
testing. 

6.  CONCLUSION 

Object diagrams have been used t o  design a 5 0 0 0  statement 
team trainging exercise and to design t h e  entire dynamics 
simulator. They are also being used t o  design another 50,000 
statement Ada system and a personnal computer based system that 
will be written i n  Modula 11. O u r  design methodology evolved 
out of t h e s e  experiences as well as t h e  limitations o f  other 
methods w e  studied. Object diagrams, abstraction analysis and 
associated principles provide a unified framework which 
encompasses concepts from [Yourdon 791, [Booch 831 and 
[Cherry 85bl. This general object-oriented approach handles 
high level system design, possibly with concurrency, through 
object-oriented decomposition down t o  a completely functional 
level. We are currently studying how object-oriented concepts 
can be used in other phases of the software life-cycle, such as 
specification and testing. When complete, this synthesis should 
produce a truly general object-oriented ------ development ---- methodology. 

TRADEMARKS 

Ada is a trademark of t h e  US Government (Ada Joint Program 
Office). 

PAMELA is a trademark o f  George W. Cherry. 
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